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Abstract

The classical Graetz methodology is applied to investigate the thermal development of forced convection in a par-

allel plate channel filled by a saturated porous medium, with walls held at constant temperature, for the case of a non-

Newtonian fluid of power-law type. A Brinkman-Forchheimer model is used for the momentum equation. The analysis

for the case of small modified Darcy number leads to expressions for the local Nusselt number and average Nusselt

number as functions of the dimensionless longitudinal coordinate, the power-law index, a modified Darcy number,

and a modified Reynolds-Forchheimer number (with the last three parameters being involved via a boundary-layer

thickness).

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Because of the use of hyperporous media in the cool-

ing of electronic equipment, there has recently been re-

newed interest in the problem of forced convection in

a porous medium channel or duct. The thermal develop-

ment aspect has been treated using Graetz-type analysis

in a series of papers by the present authors [1–6]. In all

these papers the fluid occupying the porous medium

has been Newtonian. The purpose of this paper is to ex-

tend the analysis of the thermal development to the case

of a power-law fluid.
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The analysis for the case of a Darcy model is trivial

because the case of slug flow is covered by the classical

Graetz analysis. We therefore use the Brinkman-Forch-

heimer extension to model the momentum equation. The

fully developed situation with this model has been ana-

lyzed by Nakayama and Shenoy [7] for the case of par-

allel plane walls subject to uniform heat flux. It appears

that no analytical treatment of the case of walls held at

uniform temperature has been carried out, though a

numerical treatment has been reported by Chen and Ha-

dim [8,9].
2. Analysis

For the steady-state hydrodynamically-developed sit-

uation we have unidirectional flow in the x*-direction
ed.
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between impermeable boundaries at y� = �H and

y� = H. The temperature on each boundary is held con-

stant at the uniform value T �
w. At x� = 0 the inlet temper-

ature T �
IN is assumed constant and uniform.

Following Nakayama and Shenoy [7], the momen-

tum equation is taken as

l
/n

d

dy�
du�

dy�

����
����
n�1

du�

dy�

" #
� l

K

� �
u�

n � qbu�
2 þ G ¼ 0 ð1Þ

where l is the fluid consistency of the inelastic non-New-

tonian power-law fluid (analogous to the fluid viscosity

for a Newtonian fluid), / is the porosity, n is the

power-law index, K the permeability for such a fluid, q
is the density of the fluid, b is a Forchheimer coefficient

and G is the applied pressure gradient (� dp*/dx*).

We define dimensionless variables

~x ¼ x�

PeH
; y ¼ y�

H
; u ¼ u�

u�D
: ð2Þ

The Péclet number Pe is defined in terms of REV vol-

ume-averaged quantities as

Pe ¼ qcPHU
k

: ð3Þ

The characteristic velocity u�D and the modified Rey-

nolds number ReK are defined by

u�D ¼ ðKG=lÞ1=n; ð4Þ

ReK ¼ qbKu�D
2�n=l: ð5Þ

The modified Darcy number Da is now defined by

Da ¼ ðK=/nÞ2=ð1þnÞ
=H 2: ð6Þ

In this analysis it is assumed than n < 2. (As noted by

Nakayama and Shenoy [7], shear flows with n > 2 are

not of much practical interest.)

The appropriate boundary conditions (no-slip and

symmetry) in dimensionless form are

u ¼ 0 at y ¼ 1; and du=dy ¼ 0 at y ¼ 0: ð7a;bÞ

The dimensionless form of Eq. (1) is

d

dy
du
dy

����
����
n�1

du
dy

" #
¼ un þ ReKu2 � 1

Dað1þnÞ=2 ð8Þ

A simple closed form of the solution of Eq. (8) sub-

ject to the boundary conditions (7a,b) is probably not

obtainable for the case of general n. Hence we seek an

approximate solution. For most practical situations Da

will be small compared with unity, and hence a pertur-

bation approach is in order. There is a thin boundary

layer near y = 1. Outside this boundary layer, the solu-

tion is given by u = uc, where uc is the centerline velocity

found by solving

unc þ ReKu2
c � 1 ¼ 0: ð9Þ
Scale analysis reveals that the thickness of this

boundary layer is d where

d � Da1=2=½1þ ReKu2�n
c 	1=ð1þnÞ ð10Þ

(This is confirmed by Eq. (14) below.)

As Nakayama and Shenoy [7] have shown, it is pos-

sible to transform Eq. (8) to a boundary-layer equation

for which a similarity solution is possible for the case of

sufficiently small Da. However, in a pioneering study of

the heat transfer problem an accurate velocity profile is

not needed and so a simple integral treatment is war-

ranted. Integration of Eq. (8) across the half channel,

and the use of Eq. (7b), gives (since du/dy is negative

when y = 1)

�ðjdu=dyjÞnjy¼1 ¼ Da�ð1þnÞ=2
Z 1

0

ðun þ ReKu2 � 1Þdy:

ð11Þ

The velocity profile function is approximated by

u ¼ uc for 0 6 y 6 1� d; ð12Þ

u ¼ ucð1� yÞ=d for 1� d 6 y 6 1: ð13Þ

Substitution into Eq. (11) yields

d ¼ Da1=2½n=ð1þ nÞ þ ð2=3ÞReKu2�n
c 	�1=ð1þnÞ

: ð14Þ

The mean velocity U
�
and the bulk mean tempera-

ture T �
m are defined by

U � ¼ 1

H

Z H

0

u�dy�; T �
m ¼ 1

HU �

Z H

0

u�T �dy�: ð15Þ

Here T
�
is the volume-averaged temperature. Fur-

ther dimensionless variables are defined by

û ¼ u�

U � ; h ¼ T � � T �
w

T �
IN � T �

w

: ð16Þ

From Eqs. (11)–(16) we deduce that

û ¼ 2=ð2� dÞ for 0 6 y 6 1� d; ð17Þ

û ¼ 2ð1� yÞ=ð2d � d2Þ for 1� d 6 y 6 1: ð18Þ

The analysis of the thermal problem now follows the

analysis in Nield et al. [1].

The Nusselt number Nu is defined as

Nu ¼ 2Hq00

kðT �
w � T �

mÞ
: ð19Þ

Local thermal equilibrium is assumed. (The case of

local thermal non-equilibrium could be the subject of a

later investigation.) It is also assumed that the Péclet

number is sufficiently large for axial conduction to be

neglected. In addition we have made the usual assump-

tions made in studies of forced convection in porous

media, e.g. uniform porosity and other properties, negli-

gible thermal dispersion, negligible viscous dissipation.

The steady-state thermal energy equation is then
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u�
oT �

ox�
¼ k

qcp

o2T �

oy�2
: ð20Þ

In nondimensional form this becomes

û
oh
o~x

¼ o2h
oy2

: ð21Þ

Use of the first law of thermodynamics leads to

dT �
m

dx�
¼ q00

qcpHU � ð22Þ

where

q00 ¼ hðT �
w � T �

mÞ:

Since here the wall temperature T �
w is held uniform, it

follows that

T �
w � T �

m ¼ ðT �
w � T �

INÞe�b~x; ð23Þ

where T �
IN is the inlet temperature and the Biot number b

is defined as

b ¼ hH
k

: ð24Þ

The problem now is to solve Eq. (21) subject to the

conditions

h ¼ 1 at ~x ¼ 0; h ¼ 0 at y ¼ 1;

dh=dy ¼ 0 at y ¼ 0: ð25a;b;cÞ

Separation of variables, following the assumption

that

h ¼ Nð~xÞY ðyÞ; ð26Þ

leads to two linear and homogeneous equations for N
and Y,

N0 þ k2N ¼ 0; ð27Þ

Y 00 þ k2ûY ¼ 0: ð28Þ

Eq. (28) together with the boundary conditions

Y 0ð0Þ ¼ Y ð1Þ ¼ 0 ð29Þ

defines an eigenvalue problem of Sturm-Liouville type

with eigenvalues kn and corresponding eigenfunctions

Yn(y) for n = 1,2,3,. . .. In particular,

Y 00
n þ k2

nûY n ¼ 0: ð30Þ

The required solution is the series

h ¼
X1

n¼1
CnY nðyÞ expð�k2

n~xÞ; ð31Þ

where the constants Cn are determined by the entry con-

dition (25a). Since the eigenfunctions satisfy the

orthogonality conditionZ 1

0

ûY mY ndy ¼ 0 if m 6¼ n ð32Þ
it follows that

Cn ¼
R 1

0
ûY ndyR 1

0
ûY 2

ndy
: ð33Þ

If hm is defined by

hm ¼ Tm � T w

T IN � T w
ð34Þ

then it follows that

hm ¼
Z 1

0

ûhdy ¼
X1
n¼1

Gn

k2
n

expð�k2
n~xÞ ð35Þ

where

Gn ¼
Z 1

0

Cnk
2
nûY n dy: ð36Þ

Eq. (19) leads to

Nu ¼ �2

hm

oh
oy

����
y¼1

¼ 2
P1

n¼1Gn expð�k2
n~xÞP1

n¼1ðGn=k
2
nÞ expð�k2

n~xÞ
: ð37Þ

This gives the local Nusselt number. The mean Nus-

selt number, averaged over a length ~x, is

Nu ¼ 1

~x

Z ~x

0

Nud~x ¼ � 2

~x
ln

1

hm


 �
: ð38Þ

In deriving the last equality use has been made of

Eq. (23).
3. Results and discussion

We note that the Péclet number is involved only in

the scaling of the axial coordinate. Also, the three

parameters Da, ReK and n appear in the heat-transfer

analysis only in the combination d, the boundary layer

thickness. Furthermore, the centerline velocity cancels

out of the heat-transfer equations except for an appear-

ance (in conjunction with ReK) in the expression (14) for

d, and is itself to be calculated from Eq. (9) in which ReK
and n appears. Hence it makes sense to plot the Nusselt

number versus dimensionless axial coordinate for vari-

ous values of d, and supplement these plots by Table 1

facilitating the determination of d/Da1/2 from the values

of n and ReK using Eqs. (9) and (14). It is envisaged that

readers will use input values of n and ReK to find the

appropriate entry in Table 1, use that together with an

input value of Da to obtain a value of d, and finally

use that value together with Fig. 1 to obtain the appro-

priate values of Nu.

Table 1 may be supplemented by the following

approximate expressions. When ReK is small, then

approximately

d ¼ Da1=2 1þ 1

n


 �1=ð1þnÞ

1� 2

3n
ReK

� 

: ð39Þ



Table 1

Values of d/Da1/2 for various values of n and ReK, calculated from Eq. (14) with the use of Eq. (9)

nnReK 0.001 0.01 0.1 1 10 100 1000

0.1 8.788 8.372 6.857 5.006 3.676 2.798 2.202

0.2 4.436 4.319 3.726 2.740 1.953 1.428 1.074

0.3 3.083 3.026 2.688 1.996 1.392 0.983 0.710

0.4 2.443 2.408 2.181 1.636 1.120 0.766 0.532

0.5 2.077 2.054 1.885 1.427 0.961 0.638 0.426

0.6 1.844 1.826 1.694 1.293 0.858 0.553 0.356

0.7 1.684 1.670 1.561 1.201 0.785 0.492 0.307

0.8 1.568 1.556 1.465 1.134 0.732 0.447 0.269

0.9 1.481 1.471 1.392 1.085 0.691 0.411 0.240

1.0 1.413 1.405 1.335 1.047 0.659 0.382 0.217

1.1 1.360 1.352 1.290 1.018 0.633 0.358 0.198

1.2 1.316 1.310 1.254 0.994 0.611 0.338 0.182

1.3 1.281 1.275 1.224 0.975 0.593 0.321 0.169

1.4 1.251 1.246 1.199 0.960 0.577 0.306 0.158

1.5 1.226 1.221 1.178 0.947 0.564 0.293 0.148

1.6 1.205 1.200 1.160 0.936 0.552 0.281 0.139

1.7 1.186 1.182 1.144 0.928 0.541 0.271 0.132

1.8 1.170 1.167 1.131 0.920 0.531 0.262 0.125

1.9 1.157 1.153 1.119 0.914 0.523 0.253 0.120

2.0 1.144 1.141 1.109 0.909 0.515 0.246 0.114
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Fig. 1. Plots of (a) local Nusselt number, and (b) average

Nusselt number vs. longitudinal coordinate, for various values

of the boundary layer thickness.
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When ReK is large, then approximately

d ¼ Da1=2 3

2


 �1=ð1þnÞ

Re�n=2ð1þnÞ
K : ð40Þ

The results shown in Fig. 1 are as expected. The plots

for d = 0.001 approximate those for d = 0 (slug flow) and

the results for Nu agree with those reported by Nield

et al. [6]. It is evident that Nu decreases consistently as

d increases. As expected, the values for Nu exceed those

for Nu and the values for these two quantities coincide

when ~x becomes large (corresponding to fully developed

convection). Also as expected, the fully developed value

for the case of d = 0.001 is close to p2/2 = 4.9348, the

value for slug flow.
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